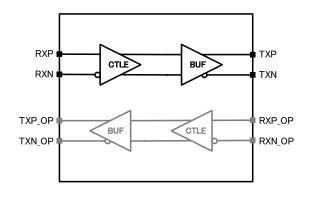


THCV2911B

V-by-One® HS Redriver with Linear Equalization


General Description

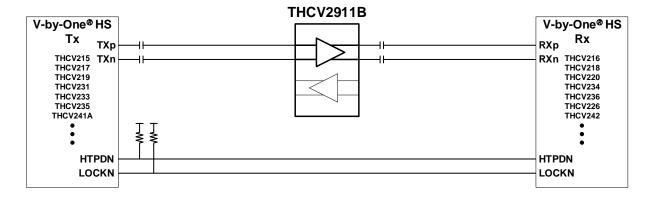
The THCV2911B is low power, high performance active redriver for V-by-One® HS with data rates up to 4Gbps. The THCV2911B pinout is configured as a forward and sub channels.

The THCV2911B features a powerful 18-stages continuous time linear equalizer (CTLE) to provide a boost of up to +10.6dB at 2GHz and open an input eye that is completely closed due to inter-symbol interference (ISI) induced by the inter-connect mediums such as cable or FR-4.

The programmable settings can be applied via pin configurations which eliminates the needs for an external microprocessor and software driver.

Block Diagram

Features

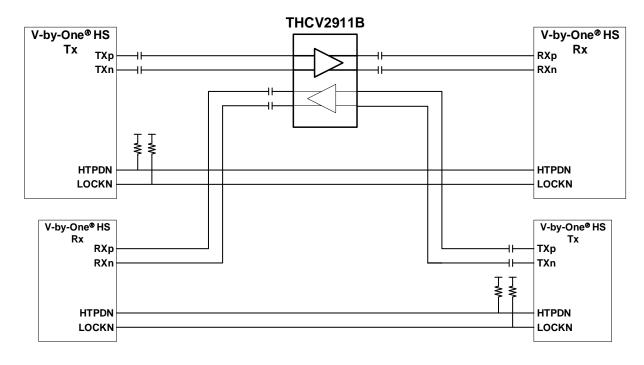

- Signal Conditioning with Linear Equalizer
- A forward and optional lane Redriver for up to 4 Gbps
- Linear Equalization up to +10.6dB@2GHz
- Adjustable Receiver Equalization and DC Gain
- Programmable via Pin Selection
- Flow-Thru Pinout
- Single Supply Voltage (3.3V)
- ESD HBM $< \pm 4kV$
- Package: QFN30 (2.5mm x 4.5mm)
- -40 to 105°C Operating Temperature

Applications

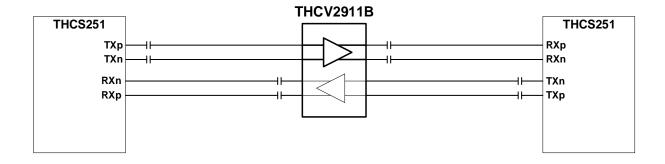
All V-by-One® HS applications for reach extension such as

- Digital Signage
- Digital blackboard
- Multi-Function Printer
- Production Printer
- Medical imaging
- Machine vision
- Image Sensor
- Camera
- Active Cable

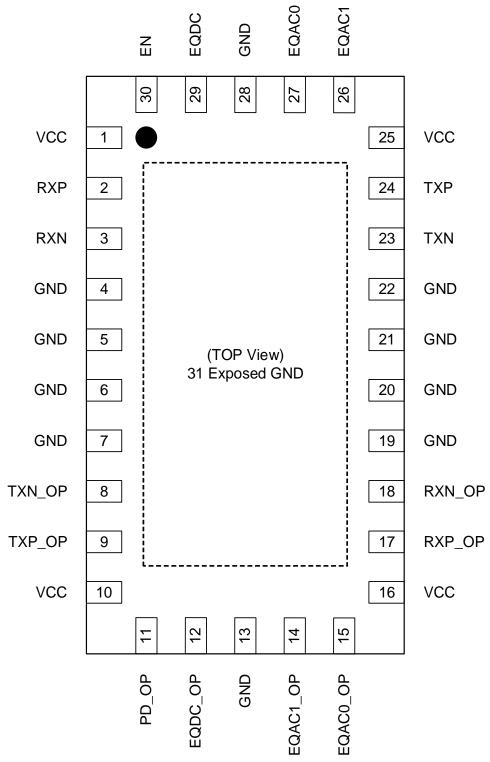
Typical Application


Copyright(C)2019 THine Electronics, Inc.

THine Electronics, Inc.


SC: E

Optional Application



Optional Application with THCS251

Pin Configuration

Pin Description

Pin Name	Pin No	Туре	Description
RXP	2	CI	High-Speed CML Signal Input of Main-Lane
RXN	3	CI	High-Speed CML Signal Input of Main-Lane
TXP	24	CO	High-Speed CML Signal Output of Main-Lane
TXN	23	CO	High-Speed CML Signal Output of Main-Lane
RXP_OP	17	CI	High-Speed CML Signal Input of Optional-Lane(OP)
RXN_OP	18	CI	High-Speed CML Signal Input of OP
TXP_OP	9	CO	High-Speed CML Signal Output of OP
TXN_OP	8	CO	High-Speed CML Signal Output of OP
EN	30	I	Channel Enable. With Internal 300kΩ Pull-up Resistor. 0 : Power Down 1 : Normal Operation
EQAC1	26	3LI (*1)	Main Rx Equalizer Peak Gain Setting This pin along with EQAC0 allows for up to 6 settings.
EQAC0	27	3LÍ (*1)	Main Rx Equalizer Peak Gain Setting This pin along with EQAC1 allows for up to 6 settings.
EQAC1_OP	14	3LI (*1)	OP Rx Equalizer Peak Gain Setting This pin along with EQAC0_OP allows for up to 6 settings.
EQAC0_OP	15	3LI (*1)	OP Rx Equalizer Peak Gain Setting This pin along with EQAC1_OP allows for up to 6 settings.
EQDC	29	3LI (*1)	Main Equalizer DC Gain Setting
EQDC_OP	12	3LÍ (*1)	OP Equalizer DC Gain Setting
PD_OP	11	3LI (*1)	Chip Operation Mode Select, if EN=1 F: OP Enable, 1: OP Disable,
VCC	1, 10, 16, 25	PWR	Power Supply Pin for On-chip Regulator.
GND	4,5,6,7,13, 19,20,21, 22,28,31	GND	Ground. Must be tied to the PCB ground plane through an array of vias. Pin#31 is exposed pad ground.

CI: CML Input Buffer, CO: CML Output Buffer

I: LVCMOS Input Buffer, 3LI: 3-Level LVCMOS Input Buffer,

PWR: Power Supply, GND: Ground

^{*1 : 3-}Level Input Buffer. With internal $180k\Omega$ pull-up resistor and $300k\Omega$ pull-down resistor.

Operation Mode Settings

Table 1. Operation Mode Settings

Pin S	Settings	Operation Made	
EN	PD_OP	Operation Mode	
	0(*1)	Reserved	
1	F(*2)	OP Enable	
	1(*3)	OP Disable	
0	Ignore	Chip Power Down.	

^{*1} Tie 0Ω to GND

Linear Equalizer Settings

Table 2. Linear Equalizer Settings

				Equ	alizer Setting	s (dB)													
EQAC1(_OP)	EQAC0(_OP)	EQDC(_OP)	Up to 0.1GHz	@0.5GHz (1Gbps)	@1.0GHz (2Gbps)	@1.5GHz (3Gbps)	@2.0GHz (4Gbps)												
0	*	*			Reserved														
F	0			0.2	0.8	1.2	1.6												
F	F			0.5	1.7	2.7	3.7												
F	1	0	-0.9	0.6	2.1	3.5	4.8												
1	0	U	-0.9	0.8	2.4	4.0	5.5												
1	F							1.3	3.7	5.9	7.9								
1	1			1.5	4.2	6.6	8.8												
F	0	_	-		2.6	3.1	3.4	3.5											
F	F			F	_	Б								2.8	3.7	4.4	5.1		
F	1						F 1.6	2.9	4.1	5.0	6.0								
1	0	Г	1.0	1.0	3.0	4.3	5.4	6.6											
1	F			3.4	5.2	6.9	8.6												
1	1			3.5	5.6	7.5	9.4												
F	0			6.5	6.8	6.9	6.8												
F	F			6.6	7.2	7.5	7.9												
F	1	.	5 7	6.7	7.4	7.8	8.3												
1	0	1	5.7	6.7	7.5	8.1	8.7												
1	F] [6.9	8.0	9.1	10.2
1	1			7.0	8.2	9.5	10.6												

Average of all channels in typical condition

^{*2} Leave pin Open

^{*3} Tie 0Ω to VCC

Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings

Par	ameter	Min	Тур	Max	Unit
Supply V	oltage(VCC)	-0.3	-	4.0	V
LVCMOS Inpu	ut/Output Voltage	-0.3	-	VCC+0.3	V
3-Level LVCM	OS Input Voltage	-0.3	-	VCC+0.3	V
CML Receiv	CML Receiver Input Voltage		-	VCC+0.3	V
CML Transmitt	er Output Voltage	-0.3	-	VCC+0.3	V
CCD Dating	HBM	-	-	±4	kV
ESD Rating	CDM	-	-	±1000	V
Storage ³	Storage Temperature		-	125	°C
Junction Temperature		-	-	125	°C
Reflow Peak 1	Reflow Peak Temperature/Time		-	260/10	°C/sec

Recommended Operating Conditions

Table 4. Recommended Operating Conditions

Parameter	Min	Тур	Max	Unit
Supply Voltage(VCC)	3.0	3.3	3.6	V
Supply Ramp Requirement	0.1	-	50	ms
Operating Temperature	-40	-	105 85(*1)	°C

(*1) PD_OP=F

Equivalent CML Input Schematic Diagram

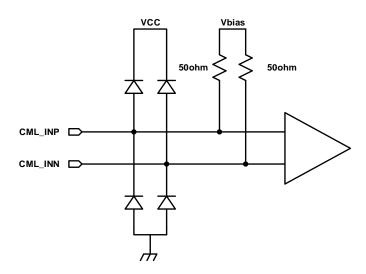


Figure 1. CML Input Schematic Diagram

Equivalent CML Output Schematic Diagram

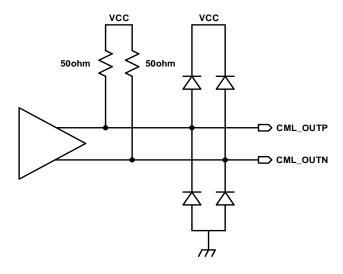


Figure 2. CML Output Schematic Diagram

Equivalent LVCMOS Input Schematic Diagram

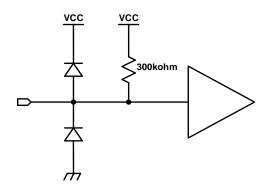


Figure 3. LVCMOS Input Schematics Diagram

Equivalent 3-Level LVCMOS Input Schematic Diagram

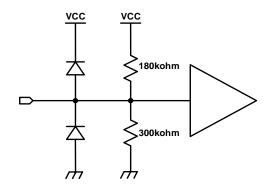


Figure 4. 3-Level Input Schematics Diagram

Electrical Specification

Supply Current

Table 5. Supply Current

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
ICC/M	ICCW Active Mode Supply Current	PD_OP=1	-	58	84	mA
ICCVV		PD_OP=F	-	84	106	mΑ
ICCS	Power Down Supply Current	-	-	120	180	uA

LVCMOS DC Specification

Table 6. LVCMOS DC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VIH	High Level Input Voltage	-	2.0	-	VCC	V
VIL	Low Level Input Voltage	-	0	-	0.7	V

3-Level LVCMOS DC Specification

Table 7. 3-Level LVCMOS DC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V_{THL}	Low Level Input Voltage	0(*1)	0	-	VCC*0.25 - 0.3	V
V_{THF}	F-Level Input Voltage	F(*2)	VCC*0.5 + 0.3	-	VCC*0.75 - 0.3	V
Vтнн	High Level Input Voltage	1(*3)	VCC*0.75 + 0.3	-	VCC	V
I _{IH_3L}	High level Input Leak Current	VIN=VCC	-100	-	100	uA
I _{IL_3L}	Low Level Input Leak Current	VIN=GND	-100	-	100	uA

Receiver DC Specification

Table 8. Receiver DC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VRTH	CML Differential Input High Threshold	-	-	-	50	mV
VRTL	CML Differential Input Low Threshold	-	-50	-	-	mV
IRIH	CML Input Leak Current High	EN=0,RXP/N=VCC	-10	-	10	uA
IRIL	CML Input Leak Current Low	EN=0,RXP/N=GND	-10	-	10	uA
RRIN	CML Differential Input Resistance	-	-	100	-	Ω

Transmitter DC Specifications

Table 9.Transmitter DC Specifications

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VTOC	CML Common mode Output Voltage	-	-	VCC-0.75	-	V
ITOH	CML Output Leak Current High	EN=0	-	-	50	uA

AC Specifications

Table 10. AC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _{EN}	Power On to EN High Delay	-	0	-	-	ns
T _{ACTIVE}	EN High to Active Delay	-	-	-	200	us
TPROPAGATION	Differential Propagation Delay	-	-	150	-	ps
$\DeltaT_PROPAGATION$	Delta Propagation Delay	-	-	-	40	ps

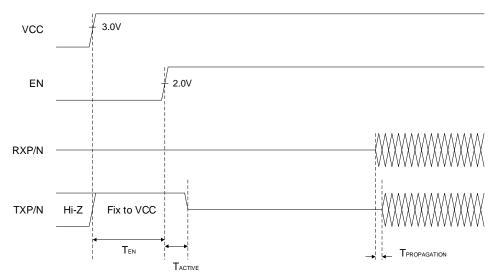


Figure 5. Power on Sequence

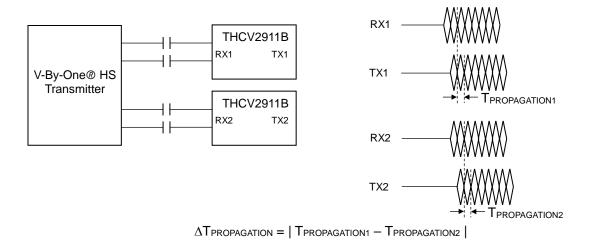


Figure 6. CML Propagation Delay Timing

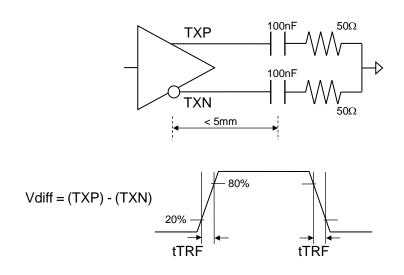
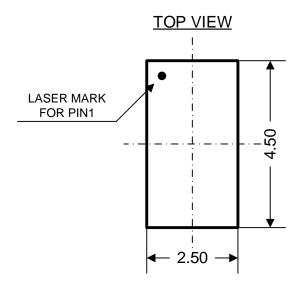
Copyright(C)2019 THine Electronics,Inc.

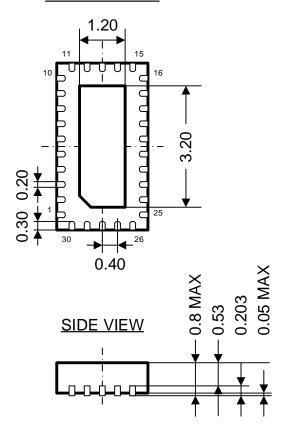
THine Electronics, Inc.

Table 11. Transmitter AC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
tTRF	Tx Rise/Fall Time	20% to 80 %	50	-	150	ps


Figure 7. CML Output Switching Timing and Test Circuit

Package

BOTTOM VIEW

Unit: mm

Notices and Requests

- 1. The product specifications described in this material are subject to change without prior notice.
- 2. The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. Thine Electronics, Inc. ("Thine") is not responsible for possible errors and omissions in this material. Please note even if errors or omissions should be found in this material, Thine may not be able to correct them immediately.
- 3. This material contains THine's copyright, know-how or other proprietary. Copying or disclosing to third parties the contents of this material without THine's prior permission is prohibited.
- 4. Note that even if infringement of any third party's industrial ownership should occur by using this product, THine will be exempted from the responsibility unless it directly relates to the production process or functions of the product.
- 5. Product Application
- 5.1 Application of this product is intended for and limited to the following applications: audio-video device, office automation device, communication device, consumer electronics, smartphone, feature phone, and amusement machine device. This product must not be used for applications that require extremely high-reliability/safety such as aerospace device, traffic device, transportation device, nuclear power control device, combustion chamber device, medical device related to critical care, or any kind of safety device.
- 5.2 This product is not intended to be used as an automotive part, unless the product is specified as a product conforming to the demands and specifications of IATF16949 ("the Specified Product") in this data sheet. Thine accepts no liability whatsoever for any product other than the Specified Product for it not conforming to the aforementioned demands and specifications.
- 5.3 THine accepts liability for demands and specifications of the Specified Product only to the extent that the user and THine have been previously and explicitly agreed to each other.
- 6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage.
- 7. Please note that this product is not designed to be radiation-proof.
- 8. Testing and other quality control techniques are used to this product to the extent THine deems necessary to support warranty for performance of this product. Except where mandated by applicable law or deemed necessary by THine based on the user's request, testing of all functions and performance of the product is not necessarily performed.
- 9. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Act.
- 10. The product or peripheral parts may be damaged by a surge in voltage over the absolute maximum ratings or malfunction, if pins of the product are shorted by such as foreign substance. The damages may cause a smoking and ignition. Therefore, you are encouraged to implement safety measures by adding protection devices, such as fuses.

THine Electronics, Inc.

sales@thine.co.jp
https://www.thine.co.jp

Copyright(C)2019 THine Electronics,Inc.

THine Electronics, Inc.